
The Clump language

Reference Manual v0.3

Didier Plaindoux

October 5, 2010



2



Contents

1 The Clump syntax 7

1.1 Lexical conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Blanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Integer literals . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Character literals . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 String literals . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.6 Reserved keywords . . . . . . . . . . . . . . . . . . . . . . 9
1.1.7 Identifiers and operators . . . . . . . . . . . . . . . . . . . 9
1.1.8 Type specification . . . . . . . . . . . . . . . . . . . . . . 9
1.1.9 Type instance . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Statements and Expressions . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7 Traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Compilation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 The Clump semantic 17

2.1 Extension vs. Variant approaches . . . . . . . . . . . . . . . . . . 17
2.1.1 Traditional Object-Oriented approach . . . . . . . . . . . 17
2.1.2 Variants type . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.3 The first class object null . . . . . . . . . . . . . . . . . . 19

3 Compilation and Clump 21

3.1 Required system and tools . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Building the Clump compiler . . . . . . . . . . . . . . . . . . . . . 22
3.3 Checking the compiler . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Compiling the Clump library . . . . . . . . . . . . . . . . . . . . . 23
3.5 Executing the regression tests . . . . . . . . . . . . . . . . . . . . 24
3.6 Compiling and executing Clump source code . . . . . . . . . . . . 25

3



4 CONTENTS



Introduction

In Class-Based programming languages the separation between types and Classes
increases the language expressiveness. But in such Object-Oriented approach
the language provides an implicit way for objects specification and implemen-
tation through classes or dedicated syntactic construction in Trait based lan-
guages. The main consequence was the design dependency existing between the
object internal state and behaviors defined in a class. Therefore modifying a
state specification implies a behavior modification and vice versa.

In this document we propose a natural evolution of the Scandinavian Object-
Oriented paradigm revisiting the duality data/knowledges. Thus a new ap-
proach where both Class-Oriented and Pattern-Oriented approaches in a same
language is proposed.

License

The Clump system is open source and can be freely redistributed. See the file
LICENSE.txt in the distribution for licensing information.

Availability

The complete Clump distribution is hosted by SourceForge and can be accessed
via the http://vorpal.sourceforge.netweb site and sources can be accessed
via the http://vorpal.svn.sourceforge.net/viewvc/vorpal/ web site. Be-
ware poject in SourceForge is hosted using the vorpal project name but while
this name is a registered trademark of the University of Colorado it cannot be
used for the diffusion and the language with is corresponding copyleft.

Finally this documentation only covers language definitions available in the
version 0.3 of the language.

5



6 CONTENTS



Chapter 1

The Clump syntax

The Clump language syntax is inspired by C, C++ and JavaTM languages for
better comprehension based on the same syntax convention. From this starting
point we propose now a step by step language description and specification.

1.1 Lexical conventions

1.1.1 Blanks

The following characters are considered as blanks: space, newline, horizontal
tabulation, carriage return, line feed and form feed. These characters as no spe-
cific signification and are ignored. Nevertheless these definitions are mandatory
while blanks are the only way to separate literals in the source code. In the
following section all rules are defined with implicit definition of blanks just in
order to propose a simple and comprehensive syntax.

1.1.2 Comments

Comments are introduced by two conventions inspired by the JavaTM and C
languages. First one is a line based comment when the second is a block based
comment. In the following sections all rules are defined with implicit definition
of blanks just in order to propose a simple and comprehensive syntax.

comment ::= // (char - {\n})* \n?
/* char* - {*/} */

There is no way to specify structural comment like Java andits corresponding
mechanism called javadoc. The current version of the syntax does not provide
any support for documentation construction for API definition and navigation.

Encapsulated block commment in another one is not allowed. In that case a
comment like /*1 ... /*2 ... 2*/ ...1*/ starts at token /*1 and ends at

7



8 CHAPTER 1. THE CLUMP SYNTAX

2*/. Therefore all characters following this comment are considered as a Clump

source code fragment.

Examples

/* This is a simple

multi-line comment */

// And this is a simple line comment

1.1.3 Integer literals

An Integer is a sequence of one or more digit. A negative number is specified
with the minus sign at the beginning of the literal. Default supported integers
are in decimal (radix 10). An alternative syntax is proposed for hexadecimal
(radix 16) integer definition; these integers are preceded by the 0x prefix or 0X
prefix.

int ::= (-)?(digit)+

(-)?(0x|0X)(digit|a..f|A..F)+

digit ::= 0..9

Examples

123, -9, 0xFF3E, 0XA3, -0xFE, -0Xab

1.1.4 Character literals

A character literal is a single character delimited by the single quote character.
A character literal can be a regular character or an escaped one.

character ::= ’char - {’}’
char ::= (regular|escaped)

escaped ::= \(b|r|n|t|f|’|")

The syntax prohibits the ’’’ sequence because it’s interpreted as (’’)’.
Then the character literal does not enclose any character and the last quote has
not corresponding ending quote which implies an unbalanced term. For this
purpose escaped characters are defined then the right syntax for the previous
character literal is ’’́. Indeed some characters can also be denoted usign this
escape sequence as usual in a programming language.

Examples

’a’, ’\t’, ’\’’



1.1. LEXICAL CONVENTIONS 9

1.1.5 String literals

A string is a sequence of characters delimited by double quote character.

string ::= "(char - {"})*"

The syntax prohibits the """ sequence because it’s interpreted as ("")".
The empty string is valid but the last double quote don’t imply a well balanced
term and then it’s not a well formed sequence of literals.

Examples

"a simple string", "Another \"one\"", "A multi \n line string"

1.1.6 Reserved keywords

The following set of identifiers are keywords in the language. These identifiers
cannot be used as conventional identifiers in the language.

package import object type interface trait class
abstract final implements extends case this
thistype self selftype new with return do
while for if unless else throw throws
try catch finally switch default as

Four set of keywords are identified. The first one - corresponding to the first
line - contains all keywords used for the entity declaration.

1.1.7 Identifiers and operators

Identifiers are used when specifying any kind of entity or variable in the lan-
guage.

fullid ::= id (. id)*

id ::= (a..z|A..Z)(a..z|A..Z|0..9| )*

operator ∈ {&,|,&&,||,<,>,<=,=>,==,!=,+,-,*,/, %, :=}

1.1.8 Type specification

Type specification is built upon a name and a set of type variable. Each type
variable can be bounded or not.

tspec ::= id tspecs?

tspecs ::= < tvar (, tvar)* >

tvar ::= id (extends tinst)?



10 CHAPTER 1. THE CLUMP SYNTAX

Examples

Hash<E,V>

Cons<E extends Peano>

int

Comparable<E extends Comparable<E>>

1.1.9 Type instance

A type instance references defined type where all parametric types are manda-
tory. A special construction provides convenient syntax for arrays declaration
but this is just a macro.

tinst ::= thisinst? fullid tinsts? []*

{ tinst ( (tinst (, tinst)*)? ) exc? }
thisinst ::= < tinst >

tinsts ::= < tinst (, tinst)* >

Examples

int

String

List<int>

Hash<int,List<String>>

<List<int>> Cons<int>

{int (int,int) throws DivideByZeroException}

List<int>[]

Array<List<int>>



1.2. STATEMENTS AND EXPRESSIONS 11

1.2 Statements and Expressions

1.2.1 Statements

stmt ::= stmt stmt

{ stmt } (;)?

expr ;

type id = expr ;

fullid = expr ;

if ( expr ) stmt (else stmt)?

unless ( expr ) stmt (else stmt)?

while ( expr ) stmt

do stmt while ( expr ) ;

for ((tinst? id=expr)?; expr; (id=expr)?) stmt

for (tinst id:expr) stmt

switch ( expr ) { cases }
return expr ;

throw expr ;

try { stmt } catches

cases ::= case tinst (as id)? : stmt cases?

default : stmt

catches ::= catch ( tinst id ) { stmt } catches?

finally { stmt }

Examples

int i = 1;

this = null;

if (true) { int i = 2; }

if (true) { /* empty */ } else { int i = 3; }

while(i < 1000) { i = i + 1 }

do { i = i + 1 } while (i < 1000);

for(int i = 0; i < 1000; i = i + 1) { /* i++ does not exist */ }

for(int i : listofint) { ... }

throw new Exception();

try { ... } catch (Exception e) { ... } finally { ... }

switch (e) { case T1 as v: ... default: ... }



12 CHAPTER 1. THE CLUMP SYNTAX

1.2.2 Expressions

expr ::= integer

string

char

( expr )

this (with { id = expr (; id = expr)* })?
self

expr . id

expr . call

new (< tinst >)? fullid (< tinsts >)? ( parms )

expr operator expr

call ::= fullid (< tinsts >)? ( (expr (, expr)*)? )

Examples

123

"Hello world !"

’\n’

new <Peano> Succ(new Succ(new Zero()))

this with { att = new <Peano> Succ(new Succ(new Zero())) }

self

self.m(this.att)

123 + x

1.3 Objects

object ::= private? modif? object tspec extends? { objectspec* } (;)?

modif ::= abstract

final

objectspec ::= attrib

methspec { stmt {
constr

extends ::= extends tinst (, tinst)*

attrib ::= private? final? tspec id (, id)* ;

constr ::= id ( tparams? ) super? { stmt }
tparams ::= tinst id (, tinst id)*

super ::= : call (, call)*



1.4. TYPES 13

Examples

object Zero { /* Empty object - Kingdom of nouns :-) */ }

object Succ {

final Peano value;

Succ(Peano value) {

this.value = value;

}

}

object Point {

int x,y;

Point() {

this.x = 0;

this.y = 0;

}

}

1.4 Types

type ::= private? type tspec = tinst (| tinst)* (;)?

Examples

type Peano =

Zero

| Succ

1.5 Interfaces

interface ::= private? final? interface tspec extends? { (methspec ;) * } (;)?

methspec ::= tinst tspec ( (tinst (, tinst)*)? ) exc?

tinst ( operator ) ( (tinst (, tinst)*)? ) exc?

exc ::= throws tinst (, tinst)*

Examples

interface IPeano<T> {

Peano add(Peano);

String toString();

}



14 CHAPTER 1. THE CLUMP SYNTAX

1.6 Classes

class ::= private? modif? class tspec( tinst ) cextends? implements? { case* } (

cextends ::= extends cinst (, cinst)*

cinst ::= tinst (as id)?

implements ::= implements tinst (, tinst)*

case ::= case tinst methods

method

methods ::= method

{ method method* }
method ::= methspec { stmt }

tspec ( tparams? ) { stmt }
( operator ) ( tparams? ) { stmt }

mparams ::= tinst? id (, tinst? id)*

Examples

class coloredPoint(ColoredPoint)

extends point as superPoint,

color as superColor

implements IPoint<thistype>, IColor

{

// Protected method

String name() {

return "Colored"

}

toString() {

return name() + "{" + superPoint.toString() + ", " + superColor.toString() + "}";

}

}

1.7 Traits

trait ::= private? trait tspec implements? { method* } (;)?

Examples

trait comparable<E> implements Comparable<E> {

(!=)(e) { return (self == e).not(); }

// (==)(e) is not provided

}



1.8. COMPILATION UNIT 15

1.8 Compilation unit

unit ::= package? import* entity*

package ::= package fullid (;)?

import ::= import fullid (;)?

entity ::= object

interface

type

class

trait

type

Examples

package samples.peano

object Zero {}

class zero(Zero) implements IPeano {

add(p) { return p; }

toString() { return "O"; }

}



16 CHAPTER 1. THE CLUMP SYNTAX



Chapter 2

The Clump semantic

In this chapter we focus on the language semantic. It covers language specific
functionalities but also revisited concepts.

2.1 Extension vs. Variant approaches

In the language two mechanisms dedicated to the type definition are identified.
The first one came from the Class-Centric approach and was embodied by the
object extension mechanism. The second one is the capability to specify variant
types inspired by Data-Centric programming languages.

2.1.1 Traditional Object-Oriented approach

The first approach is based on a well known mechanism in Object-Oriented
languages which is the extension. In Clump an object can be extended easily
with a similar mechanism as shown in the following example.

17



18 CHAPTER 2. THE CLUMP SEMANTIC

Examples

object abstract Arithmetic {}

object Integer extends Arithmetic {

int value;

Integer(int value) {

this.value = value;

}

}

object Plus extends Arithmetic {

Arithmetic left, right;

Plus(Arithmetic left, Arithmetic right) {

this.left = left;

this.right = right;

}

}

Therefor arithmetic terms can be extended easily designing object which are
Arithmetic extensions. This is the traditional Object-Oriented approach.

This extension defines a partial order over object type domains defining
explicit subtyping property used during type checking stage. Indeed it means
that when an Arithmetic object is required it de-facto covers all the existing and
future extensions. Such subtyping approach is also called nominative subtyping
and is influenced by the extension declarations only.

2.1.2 Variants type

Types can be designed independently and these type are grouped using variant
types. Therefor each type cannot be compared with other type specified in the
variant. But like extension based type when a method is specified with a variant
it accepts type defined in this variant and nothing else. Back to the arithmetic
term problematic the previous specification can also be proposed using variants.



2.1. EXTENSION VS. VARIANT APPROACHES 19

Examples

object Integer {

int value;

Integer(int value) {

this.value = value;

}

}

object Plus {

Arithmetic left, right;

Plus(Arithmetic left, Arithmetic right) {

this.left = left;

this.right = right;

}

}

type Arithmetic = Integer | Plus

The main difference is the ability to specify methods with abstract type
and therefor open type and variant type which is by opposite definitive. The
last case combined with a view approach based on cased method provides a
language where code coverage property can be verified which is not possible
with extension based object definition.

It has been mentioned that subtyping properties are based on extension
declaration in the previous section. While variant is an opposite approach where
the principal type refers other types such subtyping properties are not provided
by extensions. Then subtyping variants are compared directly implying in this
case a structural subtyping. Such subtyping property is valid if and only if the
effective type is a subset of the required type.

2.1.3 The first class object null

In the language there is no special treatment linked to null value. Unlike C
or JavaTM languages an attribute cannot be initialized with null. The reason
came from the availability to modify the value of this in a class. Therefor all
the possible values must be specified and then the special case dedicated to null
as been removed.

Nevertheless the Nullable entity concept has been designed and proposed
implying a default object provided in the language: null. In this case such
object is clearly defined and typed.



20 CHAPTER 2. THE CLUMP SEMANTIC

Examples

package clump.lang

final object Null {}

type Nullable<E> = Null | E

final object NullPointerException extends RuntimeException {}

final interface INullable<E> {

boolean isNull();

E getOrDefault(E);

E get() throws NullPointerException;

E get<T>(T) throws T;

}

final class nullable<E>(Nullable<E>) implements INullable<E> {

// Implementation ...

}

/* Basic package entities */

final Null null = new Null()

final E getFromNullable<E>(Nullable<E> n) {

return nullable<E>(n).get();

}

final boolean isNull(Nullable<void> n) {

return nullable<void>(n).isNull();

}

Therefor a denoted object can be set to null if and only if it’s specified.



Chapter 3

Compilation and Clump

3.1 Required system and tools

The following installation is valid with the version 0.1. Referenced scripts are
designed for unix like systems. On windows the java command can be used as
specified in this document.

Building the Clump system requires two softwares. First one was JavaTM

SDK 1.5 or upper. Version 1.4 and lesser are not supported because of Generics
and iterators. Second software required is ant (http://ant.apache.org/) for the
xml based build engine.

21



22 CHAPTER 3. COMPILATION AND CLUMP

3.2 Building the Clump compiler

Examples

> cd <CLUMP>

> ant -f compiler.xml

| Buildfile: compiler.xml

|

| clean:

|

| build:

| [jflex] Generated: GenLex.java

| [javac] Compiling 268 source files to <CLUMP>/trunk/classes

| [javac] Note: Some input files use unchecked or unsafe operations.

| [javac] Note: Recompile with -Xlint:unchecked for details.

| [javac] Compiling 2 source files to <CLUMP>/trunk/classes

|

| archive:

| [jar] Building jar: <CLUMP>/lib/Clump.jar

|

| compiler:

|

| BUILD SUCCESSFUL

| Total time: 3 seconds

3.3 Checking the compiler

The previous command produces one jar in the <CLUMP>/lib directory named
Clump.jar.

Examples

> cd <CLUMP>

> java -jar lib/Clump.jar

| usage: java -jar lib/Clump.jar [compile|execute] [arguments]

This command can be executed using an unapropriate JavaTM version. In
this case a specific message is printed notifying the JavaTM version incompati-
bility.



3.4. COMPILING THE CLUMP LIBRARY 23

Examples

> java -version

| java version "1.4.2_18"

| Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2_18-b08-314)

| Java HotSpot(TM) Client VM (build 1.4.2-90, mixed mode)

> cd <CLUMP>

> java -jar lib/Clump.jar

| # Abort: Unsupported virtual machine version 1.4.2-90 (must be 1.5.0 or upper).

3.4 Compiling the Clump library

This can be done using different modes. The the shortest one is the execution
of the following command.

Examples

> cd <CLUMP>

> ant -f clump.xml library

<compilation traces>

or it can also be an explicit call using java.

Examples

> cd <CLUMP>

> java -jar lib/Clump.jar compile -o site/bin site/src

or simply calling the script clumpc located in the <CLUMP>/bin directory.

Examples

> cd <CLUMP>

> ./bin/clumpc -o site/bin site/src

If no output directory is specified all compilation stages are done except the
code generation and its definitive compilation. If the JavaTMversion is 1.5 or
upper. If it’s only the runtime - and not a complete SDK - an error is raised
during the compilation.

Examples

> cd <CLUMP>

> ./bin/clumpc -o site/bin site/src

Compiler not found in .../1.5.0/Home (Its not a java SDK)



24 CHAPTER 3. COMPILATION AND CLUMP

3.5 Executing the regression tests

A first set of regresion tests is provided. These tests can be executed with the
following command.

Examples

> cd <CLUMP>

> ant -f clump.xml test

Buildfile: clump.xml

| tests:

| [java] The args attribute is deprecated. Please use nested arg elements.

| [java] Checking Exceptions

| [java] [TEST> Test exception [1] succeed

| [java] Checking Booleans

| [java] [TEST> Test booleans [1] succeed

<...>

| [java] [TEST> Test generic methods [2] succeed

| [java] Checking native method

| [java] [TEST> Test Native code [1] succeed

|

| BUILD SUCCESSFUL

| Total time: 0 seconds

or it can also be an explicit call using java.

Examples

> cd <CLUMP>

> java -jar lib/Clump.jar execute -l site/bin test.execution.all.main

or

> java -jar lib/Clump.jar execute -l lib/clump-library.jar test.execution.all.main

| Checking Exceptions

| [TEST> Test exception [1] succeed

| Checking Booleans

| [TEST> Test booleans [1] succeed

<...>

| [TEST> Test generic methods [2] succeed

| Checking native method

| [TEST> Test Native code [1] succeed

or simply calling the script clump located in the <CLUMP>/bin directory.



3.6. COMPILING AND EXECUTING CLUMP SOURCE CODE 25

Examples

> cd <CLUMP>

> ./bin/clump -l site/bin test.execution.all.main

or

> ./bin/clump -l lib/clump-library.jar test.execution.all.main

3.6 Compiling and executing Clump source code

From now end-user can write its own source code. Compiling this code can be
easily done using [-l URL] specifying library for the compilation. In fact the
compiler generates corresponding java source code and Clump abstract object
for future compilation. Such -l can be used more than once in the command
line specifying each time a library to be used during the compilation stage.

Examples

> cd <CLUMP>

> ./bin/clumpc -o <OUTDIR> -l site/bin -l <ADDITIONAL_DIR> <SRC>

or

> ./bin/clumpc -o <OUTDIR> -l lib/clump-library.jar -l <ADDITIONAL_DIR> <SRC>

Executing such compiled source code is also done specifying libraries to be
used. Therefor a specific class can be executed with the following command.

Examples

> cd <CLUMP>

> ./bin/clump -l <OUTDIR> -l site/bin -l <ADDITIONAL_DIR> <CLASS> [args]

or

> ./bin/clump -o <OUTDIR> -l lib/clump-library.jar -l <ADDITIONAL_DIR> <CLASS> [args]

As mentioned in the previous paragraph library can be referenced using an
URL. It means if a java archive is built and provided by a specific Web site it
can be referenced using [-l http://my.web.site/.../MyClumpLibrary.jar]


	The Clump syntax
	Lexical conventions
	Blanks
	Comments
	Integer literals
	Character literals
	String literals
	Reserved keywords
	Identifiers and operators
	Type specification
	Type instance

	Statements and Expressions
	Statements
	Expressions

	Objects
	Types
	Interfaces
	Classes
	Traits
	Compilation unit

	The Clump semantic
	Extension vs. Variant approaches
	Traditional Object-Oriented approach
	Variants type
	The first class object null


	Compilation and Clump
	Required system and tools
	Building the Clump compiler
	Checking the compiler
	Compiling the Clump library
	Executing the regression tests
	Compiling and executing Clump source code


